Appendix A

Parameter Estimation of SHFMM utilizing First-Order Baum-Welch Algorithm

The First-Order semi-hidden Fritchman Markov model for a discrete power line communication channel is described by the 3×3 state transition probability matrix A_1 and the 2×3 input-to-output symbol transition probabilities otherwise referred to as the error probability generation matrix B. An iterative process for estimation of the First-Order SHFMM full parameters $\Gamma_1 = \{A_1, B\}$ from a measured bit error sequence, $\bar{E} = [e_1, \ldots, e_t, \cdots e_T]$ is based on the First-Order Baum-Welch algorithm (BWA). This iterative BWA by design converges to the maximum likelihood estimator $\Gamma_1 = \{A_1, B\}$ that maximizes $\Pr(\bar{E}|\Gamma_1)$. The objective is computing the estimates of the element of the First-Order state transition probability matrix A_1. For a given three-state SHFMM, with two good states and a single bad state. Transition is not allowed between the two good states, hence, A_1 is mathematically shown in Equation A.1 as follows.

$$A_1 = \begin{bmatrix} a_{11} & 0 & a_{13} \\ 0 & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$ (A.1)

Based on the restriction in transition, the error probability generation matrix B is written in binary form as follows.

$$B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ (A.2)

And lastly, the initial state or prior probability Π, represents the probability of being in any of the three states at a particular time. The Π vector for the adopted three state SHFMM is written as follow. Note $\sum_{i=1}^{N} = 1$, for $N = 3$ (number of model states).

$$\Pi = [\pi_1 \pi_2 \cdots \pi_N]$$ (A.3)

$$\Pi = [\pi_1 \pi_2 \pi_3]$$ (A.4)
The computations needed to implement the First-Order Baum-Welch algorithm are described as follows.

A.1 Step 1: Model Initialization

Initialize the adopted model $\Gamma_1 = \{A_1, B\}$ and Π, the initial state probability vector.

A.2 Step 2: Computation of Forward and Backward Probability Variables

Given $\Gamma_1 = \{A_1, B\}$ as the adopted model, Π, the initial state probability vector, and measured bit error sequence, $\bar{E} = [e_1, e_2, \cdots, e_T]$, where T is the length of the bit error sequence. We first compute the “forward probability variables”

$$\alpha_t(i) = Pr[e_1, e_2, \cdots, e_t, s_t = S_i | \Gamma_1] \quad (A.5)$$

$$\alpha_t(i) = \pi_i b_i (e_t) \quad (A.6)$$

As well as the “backward probability variables”

$$\beta_t = Pr[e_{t+1}, e_{t+2}, \cdots, e_T | s_t = S_i, \Gamma_1] \quad (A.7)$$

For $t = 1, 2, \cdots, T$ and $i = 1, 2, \cdots, N$. Details of the computation of the forward and backward probability variables are presented as follows.

A.2.1 Forward Probability Variables Computation

The computation of the forward probability variables is executed in three steps: initialization, induction and termination procedure.

A.2.1.1 Initialization procedure :

$$\alpha_1(i) = \pi_i b_i (e_1), i = 1, 2, \cdots, N \quad (A.8)$$
A.2.1.2 Induction procedure:

\[\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij} \right] b_j(e_{t+1}), \ 1 \leq t \leq T - 1, 1 \leq j \leq N \]
(A.9)

A.2.1.3 Termination procedure:

\[\Pr[\bar{E}|\Gamma_1] = \sum_{i=1}^{N} \alpha_T(i)\beta_T(i) \]
(A.10)

Note that, \(\beta_T(i) = 1 \), for \(i = 1, 2, \cdots, N \). Therefore,

\[\sum_{i=1}^{N} \alpha_T(i) = \sum_{i=1}^{N} \Pr[e_1, e_2, \cdots, e_T, s_T = S_i|\Gamma_1] = \Pr[\bar{E}|\Gamma_1] \]
(A.11)

This means,

\[\Pr[\bar{E}|\Gamma_1] = \sum_{i=1}^{N} \alpha_T(i) \]
(A.12)

\[\Pr[\bar{E}|\Gamma_1] = \sum_{i=1}^{N} \pi_i b_i(e_T) \]
(A.13)

A.2.2 Backward Probability Variables Computation

The computation of the backward probability variables unlike the forward probability variables is executed in two steps: the initialization and induction steps as follows.

A.2.2.1 Initialization procedure:

\[\beta_T(i) = 1, \ i = 1, 2, \cdots, N \]
(A.14)

A.2.2.2 Induction procedure:

\[\beta_t(i) = \sum_{j=1}^{N} \beta_{t+1}(j)b_j(e_{t+1})a_{ij}, \ 1 \leq t \leq T - 1, 1 \leq j \leq N \]
(A.15)
A.3 Step 3: Computation of Model Parameter Re-estimation Variables

The first re-estimation variable to be computated is $\gamma_t(i)$. $\gamma_t(i)$ denotes the expected number of transitions from i, which is the probability of being in state i at time t, given the model Γ_1 and the measured bit error sequence \bar{E}. Computation of $\gamma_t(i)$ is mathematically shown as follows.

$$\gamma_t(i) = \Pr[s_t = S_i | \bar{E}, \Gamma_1] = \frac{\alpha_t(i) \beta_t(i)}{\Pr[E | \Gamma_1]}, \quad i = 1, 2, \ldots, N$$ (A.16)

$$\gamma_t(i) = \frac{\alpha_t(i) \beta_t(i)}{\sum_{i=1}^{N} \alpha_t(i) \beta_t(i)}, \quad i = 1, 2, \ldots, N$$ (A.17)

The computation of the second re-estimation variable $\xi_t(i,j)$ is also mathematically shown as follows. $\xi_t(i,j)$ denotes the expected number of transitions from state i to state j, which is the probability of being in state i at time t, and being in state j at time $t + 1$, given the model Γ_1 and the measured bit error sequence \bar{E}.

$$\xi_t(i,j) = \Pr[s_t = S_i, s_{t+1} = S_j | \bar{E}, \Gamma_1]$$ (A.18)

$$\xi_t(i,j) = \frac{\alpha_t(i) a_{ij} b_{j(e_{t+1})} \beta_{t+1}(j)}{\Pr[E | \Gamma_1]}$$ (A.19)

$$\xi_t(i,j) = \frac{\alpha_t(i) a_{ij} b_{j(e_{t+1})} \beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_t(i) a_{ij} b_{j(e_{t+1})} \beta_{t+1}(j)}$$ (A.20)

A.4 Step 4: Computation of the Model Parameter Estimates

We now compute the new First-Order state transition probability elements \hat{a}_{ij} using the expected frequencies derived in the previous step.

$$\hat{a}_{ij} = \frac{\text{expected number of transitions from } i \text{ to } j}{\text{expected number of transitions from } i}$$ (A.21)

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$ (A.22)
Appendix A. First-Order BWA for SHFMM Parameter Estimation

Note, since the input-to-output symbol transition otherwise referred to as the error probability generation matrix B is in binary form due to restriction in transition for the adopted three-state SHFMM, the estimates of the B is not computed.

The estimate of the initial state probability vector, $\hat{\pi}_i$, which is the expected number of times in state S_i at time $t = 1$ is computed as follows.

$$\hat{\pi}_i = \alpha_t(i)\beta_t(i), \ i = 1, 2, \cdots, N \quad (A.23)$$

A.5 Step 5:

Return to Step 2 with the new parameter estimates $\hat{\Gamma}_1 = \{A_1, B, \hat{\pi}\}$, or equivalently $\hat{\Gamma}_1 = \Gamma_1$, obtained in Step 4 and replicate the process till the desired convergence is attained.
Appendix B

Parameter Estimation of SHFMM utilizing Second-Order
Baum-Welch Algorithm

The Second-Order semi-hidden Fritchman Markov model for a discrete power line communication channel is described by the 9×3 state transition probability matrix A_2 and the 2×3 input-to-output symbol transition probabilities otherwise referred to as the error probability generation matrix B. An iterative process for estimation of the Second-Order SHFMM full parameters $\Gamma_2 = \{A_2, B\}$ from a measured bit error sequence, $\bar{E} = [e_1, \ldots, e_t, \ldots e_T]$ is based on the Second-Order Baum-Welch algorithm (BWA). This iterative BWA by design converges to the maximum likelihood estimator $\Gamma_2 = \{A_2, B\}$ that maximizes $\Pr(\bar{E}|\Gamma_2)$. The objective is computing the estimates of the element of the Second-Order state transition probability matrix A_2. For a given three-state SHFMM, with two good states and a single bad state. Transition is not allowed between the two good states, hence, A_1 and A_2 is mathematically shown in Equation B.1 and Equation B.2 respectively.

$$A_1 = \begin{bmatrix} a_{11} & 0 & a_{13} \\ 0 & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$ \hspace{1cm} \text{(B.1)}$$

$$A_2 = \begin{bmatrix} a_{111} & 0 & a_{113} \\ 0 & a_{122} & a_{123} \\ a_{131} & a_{132} & a_{133} \\ a_{211} & 0 & a_{213} \\ 0 & a_{222} & a_{223} \\ a_{231} & a_{232} & a_{233} \\ a_{311} & 0 & a_{313} \\ 0 & a_{322} & a_{323} \\ a_{331} & a_{332} & a_{333} \end{bmatrix}$$ \hspace{1cm} \text{(B.2)}$$
Based on the restriction in transition, the error probability generation matrix B is written in binary form as follows.

$$B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \quad (B.3)$$

And lastly, the initial state or prior probability Π, represents the probability of being in any of the three states at a particular time. The Π vector for the adopted three state Second-Order SHFMM is written as follow. Note $\sum_{i=1}^{N} \pi_i = 1$, where N is the number states in the SHFMM).

$$\Pi = [\pi_1 \, \pi_2 \, \cdots \, \pi_N] \quad (B.4)$$

$$\Pi = [\pi_1 \, \pi_2 \, \pi_3], \quad for \ N = 3 \quad (B.5)$$

The computations needed to implement the Second-Order Baum-Welch algorithm are described as follows.

B.1 Step 1: Model Initialization

Initialize the adopted model $\Gamma_2 = \{A_2, B\}$ and Π, the initial state probability vector.

B.2 Step 2: Computation of Forward and Backward Probability Variables

Given $\Gamma_2 = \{A_2, B\}$ as the adopted model, Π, the initial state probability vector, and measured bit error sequence, $\bar{E} = [e_1, e_2, \cdots, e_T]$, where T is the length of the bit error sequence. We first compute the “forward probability variables” $\alpha_t(i,j)$.

The forward probability variables denoted by $\alpha_t(i,j)$, is the probability of the partial bit error sequence from 1 to time t, and transition $S_i \rightarrow S_j$ at times $t-1$, t given the model $\Gamma_2=(A_2, B)$. $\alpha_t(i,j)$ is written in mathematical form as follows.

$$\alpha_t(i,j) = Pr(e_1, e_2, \cdots, e_t, \ s_{t-1} = S_i, s_t = S_j | \Gamma_2) \quad (B.6)$$
The “backward probability variables” is also computed. The \textit{backward probability variables} denoted by $\beta_t(i,j)$, is defined as the probability of the partial bit error sequence $t+1$ to T, given the transition S_i, S_j at times $t-1, t$ and the model $\Gamma_2={A_2, B}$. $\beta_t(i,j)$, is written in mathematical form as follows.

\begin{equation}
\beta_t(i,j) = \Pr(e_{t+1}, e_{t+2}, e_{t+3}, \ldots, e_T|s_{t-1} = S_i, s_t = S_j, \Gamma_2)
\end{equation}

\subsection{B.2.1 Forward Probability Variables Computation}

The computation of the forward probability variables is carried out in three steps: initialization, induction and termination procedure. First, we compute

\begin{equation}
\alpha_1(i) = \pi_i b_i (e_1), \ i = 1, 2, \ldots, N
\end{equation}

Then, other procedures are carried out as follows.

\subsection*{B.2.1.1 Initialization procedure:}

\begin{equation}
\alpha_2(i,j) = \alpha_1(i) a_{ij} b_j (e_2), \ for \ 1 \leq i, j \leq N
\end{equation}

\subsection*{B.2.1.2 Induction procedure:}

\begin{equation}
\alpha_{t+1}(j,k) = \left[\sum_{i=1}^{N} \alpha_t(i,j) a_{ijk} \right] b_k (e_{t+1}), \ for \ 2 \leq t \leq T - 1
\end{equation}

\subsection*{B.2.1.3 Termination procedure:}

\begin{equation}
\Pr(\bar{E}|\Gamma_2) = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_T(i,j)
\end{equation}

\subsection{B.2.2 Backward Probability Variables Computation}

The computation of the backward probability variables unlike the forward probability variables is executed in two steps: the initialization and induction steps as follows.
B.2.2.1 Initialization procedure:

\[\beta_t(i,j) = 1, \text{ for } 1 \leq i,j \leq N \] (B.12)

B.2.2.2 Recursive procedure:

\[\beta_t(i,j) = \sum_{k=1}^{N} a_{ijk} b_k(e_{t+1}) \beta_{t+1}(j,k), \text{ for } T - 1 \geq t \geq 2 \] (B.13)

Computation of both forward and backward functions requires in the order of \(N^3T \) calculations.

B.3 Step 3: Computation of Model Parameter Re-estimation Variables

The first parameter re-estimation variable to be computed is denoted by \(\eta_t(i,j,k) \) and defined as the probability of being in states \(S_i, S_j \) and \(S_k \) respectively at times \(t-1, t \) and \(t+1 \) given the Second-Order model \(\Gamma_2 = \{A_2, B\} \) and measured bit error sequence \(\bar{E} \). \(\eta_t(i,j,k) \) is computed as follows.

\[\eta_t(i,j,k) = \Pr(s_{t-1} = S_i, s_t = S_j, s_{t+1} = S_k | \bar{E}, \Gamma_2) \] (B.14)

\[\eta_t(i,j,k) = \frac{\alpha_t(i,j) a_{ijk} b_k(e_{t+1}) \beta_{t+1}(j,k)}{\Pr(\bar{E} | \Gamma_2)} \] (B.15)

\[\eta_{t+1}(i,j,k) = \frac{\alpha_{t+1}(i,j) a_{ijk} b_k(e_{t+2}) \beta_{t+2}(j,k)}{\Pr(\bar{E} | \Gamma_2)} \] (B.16)

The second parameter re-estimation variable to be computed is denoted by \(\xi_t(i,j) \) and defined as the probability of being in state \(S_i \) at time \(t \) and in state \(S_j \) at time \(t+1 \) given the Second-Order model \(\Gamma_2 = \{A_2, B\} \) and measured bit error sequence \(\bar{E} \). \(\xi_t(i,j) \) is computed as follows.

\[\xi_t(i,j) = \Pr(s_t = S_i, s_{t+1} = S_j | \bar{E}, \Gamma_2) \] (B.17)
Appendix B. Second-Order BWA for SHFMM Parameter Estimation

\[\xi_t(i, j) = \sum_{k=1}^{N} \eta_{t+1}(i, j, k) \]
\[\xi_t(i, j) = \sum_{k=1}^{N} \frac{\alpha_{t+1}(i, j) a_{ijk} b_k (e_{t+2}) \beta_{t+2}(j, k)}{\Pr(\bar{E}|\Gamma_2)} \]

The last parameter re-estimation variable to be computed is denoted by \(\gamma_t(i) \) and defined as the probability of being in state \(S_i \) at time \(t \), given the Second-Order model \(\Gamma_2 = \{ A_2, B \} \) and measured bit error sequence \(\bar{E} \). \(\gamma_t(i) \) is computed as follows.

\[\gamma_t(i) = \Pr(s_t = S_i|\bar{E}, \Gamma_2) \]
\[\gamma_t(i) = \sum_{j=1}^{N} \xi_t(i, j) \]
\[\gamma_t(i) = \sum_{j=1}^{N} \sum_{k=1}^{N} \frac{\alpha_{t+1}(i, j) a_{ijk} b_k (e_{t+2}) \beta_{t+2}(j, k)}{\Pr(\bar{E}|\Gamma_2)} \]

B.4 Step 4: Computation of the Model Parameter Estimates

We now compute the new First-Order state transition probability elements \(\hat{a}_{ij} \) using the parameter re-estimation variables computed in the previous step as follows.

\[\hat{a}_{ij} = \frac{\xi_1(i, j)}{\gamma_1(i)} \]

We also compute the new Second-Order state transition probability elements \(\hat{a}_{ijk} \) as follows.

\[\hat{a}_{ijk} = \frac{\sum_{t=1}^{T-3} \eta_{t+1}(i, j, k)}{\sum_{t=1}^{T-3} \xi_t(i, j)} \]

Note, since the input-to-output symbol transition otherwise referred to as the error probability generation matrix \(B \) is in binary form due to restriction in transition for the adopted three-state SHFMM, the estimates of the \(B \) is not computed.
Appendix B. Second-Order BWA for SHFMM Parameter Estimation

The estimate of the initial state probability vector, $\hat{\pi}_i$, is computed as follows.

$$\hat{\pi}_i = \frac{\gamma_1(i)}{\sum_{i=1}^{N} \gamma_1(i)}$$ (B.25)

B.5 Step 5:

Return to Step 2 with the new parameter estimates $\hat{\Gamma}_2 = \{A_2, B, \hat{\pi}\}$, or equivalently $\hat{\Gamma}_2 = \Gamma_2$, obtained in Step 4 and replicate the process till the desired convergence is attained.

A summary of the procedural steps in carrying out model parameter re-estimation using the extended Second-Order Baum-Welch algorithm is as follows.

1. The initialization of π_i^0, a_{ij}^0, a_{ijk}^0 and $b_k^0(l)$, for $1 \leq i, j, k \leq N, 1 \leq l \leq M$.

2. Computation of the forward and backward probabilities.

3. Computation of the re-estimation formulas: $\eta_t(i, j, k)$, $\xi_t(i, j)$ and $\gamma_t(i)$, for $1 \leq i, j, k \leq N, 2 \leq t \leq T - 1$ using the computed forward and backward probabilities.

4. Computation of the new re-estimated parameters: $\hat{\pi}_i$, \hat{a}_{ij}, \hat{a}_{ijk} and $\hat{b}_k(l)$ for $1 \leq i, j, k \leq N, 1 \leq l \leq M$ utilizing the parameter re-estimation formulas.

5. Reiteration of steps 2-4 with the new re-estimated model parameters until the desired level of convergence is reached, that is, $\pi_i = \hat{\pi}_i$, $a_{ij} = \hat{a}_{ij}$, $a_{ijk} = \hat{a}_{ijk}$ and $b_k(l) = \hat{b}_k(l)$ for $1 \leq i, j, k \leq N, 1 \leq l \leq M$.
Appendix C

Initial State Transition Probabilities for the First-Order SHFMMs

Table C.1: First-Order SHFMM initial state transition probabilities (model 1 - 20)

<table>
<thead>
<tr>
<th></th>
<th>A_1^1</th>
<th>A_1^2</th>
<th>A_1^3</th>
<th>A_1^4</th>
<th>A_1^5</th>
<th>A_1^6</th>
<th>A_1^7</th>
<th>A_1^8</th>
<th>A_1^9</th>
<th>A_1^{10}</th>
<th>A_1^{11}</th>
<th>A_1^{12}</th>
<th>A_1^{13}</th>
<th>A_1^{14}</th>
<th>A_1^{15}</th>
<th>A_1^{16}</th>
<th>A_1^{17}</th>
<th>A_1^{18}</th>
<th>A_1^{19}</th>
<th>A_1^{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{11}</td>
<td>0.65</td>
<td>0.75</td>
<td>0.85</td>
<td>0.95</td>
<td>0.90</td>
<td>0.80</td>
<td>0.89</td>
<td>0.79</td>
<td>0.95</td>
<td>0.85</td>
<td>0.92</td>
<td>0.90</td>
<td>0.95</td>
<td>0.65</td>
<td>0.85</td>
<td>0.75</td>
<td>0.88</td>
<td>0.98</td>
<td>0.90</td>
<td>0.95</td>
</tr>
<tr>
<td>a_{13}</td>
<td>0.35</td>
<td>0.25</td>
<td>0.15</td>
<td>0.05</td>
<td>0.10</td>
<td>0.20</td>
<td>0.11</td>
<td>0.21</td>
<td>0.05</td>
<td>0.15</td>
<td>0.08</td>
<td>0.10</td>
<td>0.05</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.12</td>
<td>0.02</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>a_{22}</td>
<td>0.75</td>
<td>0.85</td>
<td>0.85</td>
<td>0.87</td>
<td>0.85</td>
<td>0.95</td>
<td>0.89</td>
<td>0.95</td>
<td>0.85</td>
<td>0.75</td>
<td>0.95</td>
<td>0.85</td>
<td>0.95</td>
<td>0.85</td>
<td>0.88</td>
<td>0.85</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.85</td>
</tr>
<tr>
<td>a_{31}</td>
<td>0.35</td>
<td>0.46</td>
<td>0.45</td>
<td>0.38</td>
<td>0.50</td>
<td>0.40</td>
<td>0.65</td>
<td>0.55</td>
<td>0.50</td>
<td>0.46</td>
<td>0.55</td>
<td>0.45</td>
<td>0.55</td>
<td>0.20</td>
<td>0.37</td>
<td>0.55</td>
<td>0.45</td>
<td>0.55</td>
<td>0.23</td>
<td>0.30</td>
</tr>
<tr>
<td>a_{32}</td>
<td>0.50</td>
<td>0.45</td>
<td>0.41</td>
<td>0.50</td>
<td>0.40</td>
<td>0.50</td>
<td>0.25</td>
<td>0.32</td>
<td>0.38</td>
<td>0.39</td>
<td>0.35</td>
<td>0.45</td>
<td>0.35</td>
<td>0.65</td>
<td>0.52</td>
<td>0.35</td>
<td>0.44</td>
<td>0.30</td>
<td>0.68</td>
<td>0.60</td>
</tr>
<tr>
<td>a_{33}</td>
<td>0.15</td>
<td>0.09</td>
<td>0.14</td>
<td>0.12</td>
<td>0.10</td>
<td>0.10</td>
<td>0.13</td>
<td>0.12</td>
<td>0.15</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.15</td>
<td>0.11</td>
<td>0.10</td>
<td>0.11</td>
<td>0.15</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Table C.2: First-Order SHFMM initial state transition probabilities (model 21 - 40)

| | A_1^{21} | A_1^{22} | A_2^{22} | A_1^{23} | A_2^{23} | A_1^{24} | A_2^{24} | A_1^{25} | A_2^{25} | A_1^{26} | A_2^{26} | A_1^{27} | A_2^{27} | A_1^{28} | A_2^{28} | A_1^{29} | A_2^{29} | A_1^{30} | A_2^{30} | A_1^{31} | A_2^{31} | A_1^{32} | A_2^{32} | A_1^{33} | A_2^{33} | A_1^{34} | A_2^{34} | A_1^{35} | A_2^{35} | A_1^{36} | A_2^{36} | A_1^{37} | A_2^{37} | A_1^{38} | A_2^{38} | A_1^{39} | A_2^{39} | A_1^{40} | A_2^{40} |
|-------|------------|
| a_{11} | 0.80 | 0.90 | 0.95 | 0.90 | 0.95 | 0.90 | 0.80 | 0.90 | 0.80 | 0.70 | 0.80 | 0.90 | 0.69 | 0.79 | 0.99 | 0.89 | 0.59 | 0.89 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 |
| a_{13} | 0.20 | 0.10 | 0.05 | 0.10 | 0.05 | 0.10 | 0.20 | 0.10 | 0.20 | 0.05 | 0.30 | 0.20 | 0.10 | 0.31 | 0.21 | 0.01 | 0.11 | 0.41 | 0.11 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
| a_{22} | 0.90 | 0.92 | 0.85 | 0.80 | 0.90 | 0.85 | 0.72 | 0.82 | 0.92 | 0.62 | 0.90 | 0.92 | 0.85 | 0.82 | 0.92 | 0.82 | 0.92 | 0.95 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 |
| a_{31} | 0.10 | 0.08 | 0.15 | 0.20 | 0.15 | 0.28 | 0.18 | 0.08 | 0.38 | 0.10 | 0.08 | 0.15 | 0.18 | 0.08 | 0.08 | 0.05 | 0.08 | 0.05 | 0.08 | 0.05 | 0.08 | 0.05 | 0.08 | 0.05 | 0.08 | 0.05 | 0.08 | 0.05 | 0.08 | 0.05 |
| a_{32} | 0.35 | 0.45 | 0.15 | 0.45 | 0.50 | 0.40 | 0.45 | 0.50 | 0.60 | 0.70 | 0.50 | 0.40 | 0.40 | 0.30 | 0.50 | 0.30 | 0.50 | 0.65 | 0.40 | 0.40 | 0.26 | 0.52 | 0.26 | 0.52 | 0.26 | 0.52 | 0.26 | 0.52 | 0.26 | 0.52 |
| a_{33} | 0.50 | 0.45 | 0.75 | 0.48 | 0.50 | 0.42 | 0.50 | 0.43 | 0.40 | 0.35 | 0.20 | 0.45 | 0.51 | 0.52 | 0.65 | 0.40 | 0.60 | 0.40 | 0.26 | 0.52 | 0.26 | 0.52 | 0.26 | 0.52 | 0.26 | 0.52 | 0.26 | 0.52 | 0.26 | 0.52 |
Table C.3: First-Order SHFMM initial state transition probabilities (model 41 - 60)

	A_{11}^1	A_{12}^1	A_{13}^1	A_{14}^1	A_{15}^1	A_{16}^1	A_{17}^1	A_{18}^1	A_{19}^1	A_{20}^1	A_{21}^1	A_{22}^1	A_{23}^1	A_{24}^1	A_{25}^1	A_{26}^1	A_{27}^1	A_{28}^1	A_{29}^1	A_{30}^1	A_{31}^1	A_{32}^1	A_{33}^1
a_{11}	0.83	0.93	0.73	0.63	0.95	0.88	0.93	0.95	0.75	0.98	0.93	0.99	0.68	0.93	0.88	0.96	0.68	0.78	0.95	0.83			
a_{13}	0.17	0.07	0.27	0.37	0.05	0.12	0.07	0.05	0.25	0.02	0.07	0.01	0.32	0.07	0.12	0.04	0.32	0.22	0.05	0.17			
a_{22}	0.99	0.95	0.79	0.89	0.79	0.89	0.83	0.95	0.85	0.89	0.79	0.93	0.94	0.98	0.75	0.95	0.85	0.99					
a_{23}	0.01	0.05	0.21	0.11	0.21	0.12	0.21	0.17	0.05	0.15	0.11	0.21	0.25	0.06	0.02	0.25	0.05	0.15	0.01				
a_{31}	0.40	0.50	0.40	0.60	0.50	0.30	0.50	0.49	0.45	0.37	0.40	0.55	0.48	0.75	0.65	0.50	0.25	0.60	0.70	0.40			
a_{32}	0.45	0.45	0.50	0.35	0.40	0.55	0.55	0.45	0.45	0.53	0.55	0.30	0.45	0.15	0.28	0.48	0.65	0.25	0.25	0.45			
a_{33}	0.15	0.05	0.10	0.05	0.10	0.15	0.05	0.06	0.10	0.05	0.15	0.07	0.10	0.07	0.02	0.10	0.15	0.05	0.15				

Table C.4: First-Order SHFMM initial state transition probabilities (model 61-81)

	A_{11}^3	A_{12}^3	A_{13}^3	A_{14}^3	A_{15}^3	A_{16}^3	A_{17}^3	A_{18}^3	A_{19}^3	A_{20}^3	A_{21}^3	A_{22}^3	A_{23}^3	A_{24}^3	A_{25}^3	A_{26}^3	A_{27}^3	A_{28}^3	A_{29}^3	A_{30}^3	A_{31}^3	A_{32}^3	A_{33}^3
a_{11}	0.77	0.82	0.93	0.96	0.91	0.99	0.75	0.76	0.97	0.81	0.75	0.88	0.95	0.79	0.89	0.91	0.99	0.74					
a_{13}	0.23	0.18	0.07	0.04	0.09	0.01	0.25	0.24	0.03	0.45	0.19	0.25	0.12	0.15	0.05	0.29	0.11	0.09	0.01	0.26			
a_{22}	0.89	0.91	0.92	0.87	0.91	0.89	0.91	0.94	0.77	0.89	0.81	0.97	0.78	0.87	0.74	0.71	0.79	0.87	0.79	0.74			
a_{23}	0.11	0.09	0.08	0.13	0.09	0.11	0.09	0.06	0.23	0.11	0.19	0.03	0.22	0.13	0.26	0.29	0.29	0.13	0.12	0.21			
a_{31}	0.50	0.37	0.50	0.75	0.36	0.40	0.71	0.61	0.52	0.62	0.73	0.64	0.72	0.52	0.47	0.79	0.69	0.62	0.52	0.23			
a_{32}	0.41	0.61	0.46	0.15	0.45	0.52	0.19	0.29	0.40	0.27	0.20	0.28	0.17	0.45	0.48	0.17	0.21	0.23	0.35	0.69			
a_{33}	0.09	0.02	0.04	0.10	0.19	0.08	0.10	0.10	0.08	0.11	0.07	0.08	0.11	0.03	0.05	0.04	0.10	0.15	0.13	0.08			

13