A determinantal representation for derangement numbers

Feng Qi1,2,3,*

1Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China
2College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China
3Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
*Corresponding author E-mail: qifeng618@gmail.com

Abstract

In the note, the author finds a representation for derangement numbers in terms of a tridiagonal determinant whose elements are the first few natural numbers.

\textbf{Keywords:} derangement number; determinantal representation; tridiagonal determinant.

In combinatorics, a derangement is a permutation of the elements of a set, such that no element appears in its original position. The number of derangements of a set of size \(n\) is called derangement number and sometimes denoted by \(!n\). The first ten derangement numbers \(!n\) for \(0 \leq n \leq 9\) are

1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496.

We now discover that derangement numbers \(!n\) can be beautifully expressed as a certain explicitly written down tridiagonal determinant. To the best of our knowledge, we have not seen such a representation in the context earlier.

\textbf{Theorem 1.} For \(n \in \{0\} \cup \mathbb{N}\), derangement numbers \(!n\) can be expressed by a tridiagonal \((n+1) \times (n+1)\) determinant

\[
!n = \begin{vmatrix}
-1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & -1 & 1 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & -2 & 2 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & -3 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & n-3 & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & -(n-2) & n-2 & 1 \\
0 & 0 & 0 & 0 & \ldots & 0 & -(n-1) & n-1
\end{vmatrix}
\]

where

\[
e_{ij} = \begin{cases}
1, & i-j = 1, \\
2, & i-j = 0, \\
1, & i-j = 0, \pm 1.
\end{cases}
\]

\textbf{Proof.} Once we write down the determinant, the proof of Theorem 1 can be made into a single line! Indeed, if the determinant written down in Theorem 1 is denoted by \(a_n\), then an induction immediately gives \(a_{n+1} = n(a_n + a_{n-1})\). This clearly produces derangement numbers \(!n\) which are determined by this recursion. Once discovered, the proof is just a single line. \hfill \qed

\textbf{Remark 1.} Recently, an alternative, although slightly complicated, proof of Theorem 1 was supplied in [1].

\textbf{References}