Supplementary Material: Molecular Statics Calculations of the Biases and Point Defect Capture Volumes of Small Cavities

Aaron A Kohnert1, Mary Alice Cusentino1, Brian D Wirth1,2

1University of Tennessee, Knoxville, TN
2Oak Ridge National Lab, 1 Bethel Valley Road Knoxville TN

Figure 1: Interaction energy maps for a \langle 100 \rangle dumbbell with a 55 vacancy cluster in three fcc crystals. Maps are shown for the (001) plane (top) and (0\bar{1}1) plane (bottom) nearest the cavity center of mass for aluminum, copper, and nickel.
Figure 2: Interaction energy maps for a $\langle 111 \rangle$ dumbbell with a 59 vacancy cluster in three bcc crystals where the potential produces an SIA ground state lies in that direction. Maps are shown for the (112) plane (top) and (101) plane (bottom) nearest the cavity center of mass for chromium, vanadium, and tungsten.

Figure 3: Interaction energy maps for a $\langle 110 \rangle$ dumbbell with a 59 vacancy cluster in iron using the three alternative potentials explored in this work. Maps are shown for the three (111) planes (top) and the (110) plane (bottom) nearest the cavity center of mass for each potential.