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Velocity-porosity relationships, 1: Accurate velocity model
for clean consolidated sandstones

Mark A. Knackstedt∗, Christoph H. Arns∗, and W. Val Pinczewski‡

ABSTRACT

We use numerical simulations to derive the elastic
properties of model monomineralic consolidated sand-
stones. The model morphology is based on overlapping
spheres of a mineral phase. We consider model quartzose
and feldspathic sands. We generate moduli-porosity re-
lationships for both the dry and water-saturated states.
The ability to control pore space structure and mineral-
ogy results in numerical data sets which exhibit much less
noise than corresponding experimental data. The numer-
ical data allows us to quantitatively analyze the effects
of porosity and the properties of the mineral phase on
the elastic properties of porous rocks. The agreement be-
tween the numerical results and available experimental
data for clean consolidated sandstones is encouraging.

We compare our numerical data to commonly used
theoretical and empirical moduli-porosity relationships.
The self-consistent method gives the best theoretical fit
to the numerical data. We find that the empirical relation-

ship of Krief et al. is successful at describing the numeri-
cal data for dry shear modulus and that the recent empir-
ical method of Arns et al. gives a good match to the nu-
merical data for Poisson’s ratio or Vp/Vs ratio of dry rock.
The Raymer equation is the best of the velocity-porosity
models for the water-saturated systems. Gassmann’s re-
lations are shown to accurately map between the dry and
fluid-saturated states.

Based on these results, we propose a new empirical
method, based solely on a knowledge of the mineral
modulus, to estimate the full velocity-porosity relation-
ship for monomineralic consolidated sands under dry
and fluid-saturated states. The method uses the equa-
tion of Krief et al. for the dry shear modulus and the
empirical equation of Arns et al. for the dry Poisson’s
ratio. Gassmann’s relations are applied to obtain the
fluid-saturated states. The agreement between the new
empirical method, the numerical data and available ex-
perimental data for dry and water-saturated states is en-
couraging.

INTRODUCTION

Accurate elastic modulus-porosity or velocity-porosity re-
lationships are critical to the determination of lithology from
seismic or sonic log data as well as for direct seismic iden-
tification of pore fluids. Existing predictive methods reduce
to two simple elements: establish empirical relationships be-
tween elastic moduli and porosity for a reference fluid (usually
water), and then use Gassmann’s relations to map these to
other pore fluid states. Unfortunately, experimental modulus-
porosity data usually display considerable scatter. The scatter is
primarily due to variations in microstructure (pore shape, size,
degree of compaction) (Marion et al., 1992) as well as clay con-
tent and distribution (Han, 1986) and the presence of cracks
within the matrix. These features, which are difficult to mea-
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sure quantitatively, comprise the microstructure of the rock. In
order to predict realistic rock properties or to properly inter-
pret experimentally measured modulus-porosity relationships,
it is necessary to have an accurate method of relating elastic
properties to porosity, mineralogy and microstructure. Exist-
ing theoretical methods [e.g., bounds (Hashin and Shtrikman,
1963) and effective medium theories (Budiansky, 1965; Hill,
1965; Berryman, 1992; Gubernatis and Krumsahl, 1975;
Korringa et al., 1979)] are based on different assumptions and
choice of reference states, and often result in different predic-
tions. Moreover, they provide limited insight into the effects of
complex microstructure and mineralogy on velocity-porosity
relationships.

It is now possible to accurately estimate the elastic prop-
erties of complex materials from computations made directly
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Velocity Relationships for Clean Sands 1823

on digitized 3D images of rock microstructure (Arns et al.,
2002b) or on statistically equivalent model microstructures
(Arns et al., 2002a). These techniques offer the possibilities
of exploring, for the first time, velocity-to-porosity transfor-
mations in a more controlled environment than is possible ex-
perimentally and of providing greater insight and better pre-
dictive power than is possible with existing analytical mod-
els. In this paper, we mimic the microstructure of consolidated
sandstones with a morphology based on overlapping grains,
and computationally generate modulus-porosity relationships
for both the dry and water-saturated states. We consider both
model quartzose and feldspathic sands, and compare our re-
sults with existing theoretical and empirical relationships for
deriving moduli-porosity estimates. The self-consistent method
(Budiansky, 1965; Hill, 1965; Gubernatis and Krumsahl, 1975;
Korringa et al., 1979) gives the best theoretical fit to the nu-
merical data. We note that the Krief empirical relationship
(Krief et al., 1990) is particularly successful at describing the
numerical data for dry shear modulus, and a recently derived
method (Arns et al., 2002a) gives a good prediction of the Pois-
son’s ratio data for dry rock. We find that the Raymer equation
(Raymer et al., 1980) is the best of the simple modulus-porosity
models for water-saturated cases. In all cases Gassmann’s re-
lations accurately map between the dry and fluid-saturated
states.

Based on these results, we propose an accurate empirical
method for estimating the full modulus/porosity relationship
for well-consolidated sands from only a knowledge of the min-
eral content of the rock. A two-step process is described:

1) Estimate dry velocity-porosity relationship via Krief
et al.’s (1990) and Arns et al.’s (2002a) equations.

2) Apply Gassmann’s relations to obtain fluid-saturated
states.

The match to numerical data, available experimental data, and
empirical fits to experimental data for clean sands is good.

FIG. 1. Images of the pore space of an OS model. Three-dimensional pore space images of the model microstruc-
ture are shown at porosities of (a) 10%, (b) 20%, and (c) 30%. Two-dimensional slices through the 3D data sets
are shown at (d) φ= 10%, (e) 20%, and (f) 30%. The image size is ten times the sphere radius.

METHODS

Mineral phase microstructure

A natural model for a consolidated sandstone is based on
overlapping spheres or grains (OS model). The model is gener-
ated by randomly placing solid (discretized) spheres in a cubic
cell to produce a set of overlapping grains. The space outside
the grains is the pore space with porosity φ. The pore phase
is macroscopically connected above porosities of ' 4%, and
the solid phase remains connected to very high porosity. We
use the model to calculate elastic properties over a very wide
range of porosity: 5%<φ< 50%. To generate the microstruc-
ture we choose solid spheres of (discretized) radius r voxels in
a cubic box of size 10× r voxels. In Figure 1, we illustrate the
microstructure of the pore space of the model at a number of
different porosities.

Although it is possible to formulate more realistic mod-
els which include the effects of consolidation, compaction
and cementation (Øren et al., 1998), the OS model has been
shown to provide a very good match for the microstructure of
Fontainebleau sandstone data (Thovert et al., 2001) without the
heavy computational expense of more complex models. More-
over, we have compared the predictions of the elastic modulus
of the OS model with the properties derived from digital 3D
images of sandstones and from experiment (Han, 1986). The
match is good across the full range of porosity measured (Arns
et al., 2002b).

Elastic simulation

We use a finite-element method (FEM) to estimate the elas-
tic properties of the model system. FEM uses a variational for-
mulation of the linear elastic equations and finds the solution
by minimizing the elastic energy using a fast conjugate-gradient
method. Each voxel is taken to be a trilinear finite element. De-
tails of the method and the programs can be found elsewhere
(Garboczi and Day, 1995b; Garboczi, 1998). In principle, the
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1824 Knackstedt et al.

method provides an exact solution to the equations of elastic-
ity for a body subjected to a macroscopic strain. The resultant
average stress in the body is used to calculate the various elas-
tic moduli. In practice, the accuracy of the results are limited
by discretization errors (how well a continuum model can be
resolved) and statistical noise (limited system size) (Roberts
and Garboczi, 2000; Arns et al., 2002b). A minimum of ten
independent samples were used to reduce statistical errors to
the order of a few percent. Discretization errors, which can re-
main of the order of 20% at high resolutions, are scaled out by
generating the same microstructures for different resolutions
(grain sizes) and extrapolating to infinite resolution; for details
see Roberts and Garboczi (2000) and Arns et al. (2002b).

The elastic properties assigned to the mineral comprising
the rock skeleton were taken from Mavko et al. (1998) and are
summarized in Table 1. The choice of the water saturated con-
dition is made to allow for comparison with the experimental
data of Han (1986).

Table 1. Material properties for the minerals and water
(40 MPa) used in the simulations (Mavko et al., 1998). K is
the bulk modulus, µµ the shear modulus, and ρρ the rock den-
sity. The water conditions are chosen to allow for comparison
with experimental data (Han, 1986).

Material K (GPa) µ (GPa) ρ (g/cm−3)

Quartz 37.0 44.0 2.65
Feldspar 37.5 15.0 2.62
Water (T = 200◦C, 40 MPa) 2.2 0.0 1.00

FIG. 2. Results of the simulation for the variation of the (a) bulk modulus, (b) shear modulus, (c) Vp, and (d)
Vp/Vs ratio under dry conditions as a function of porosity for the single-phase OS model with quartz and feldspar
as the mineral phase.

RESULTS

Dry rock

Figure 2 shows results for the dry bulk modulus K , shear
modulus µ, Vp, and Vp/Vs ratio for the OS model as a function
of porosity for two different simple (single-mineral) phases of
quartz and feldspar. The moduli of the rocks trend between
the modulus of the mineral at low porosities to zero at higher
porosities. Although the bulk modulus of quartz (37.0 GPa)
and feldspar (37.5 GPa) are very similar, the curve for the bulk
modulus of the porous systems vary appreciably. Moreover, al-
though Kfeld > Kquartz, the curves for feldspar are consistently
lower than those for the quartz. The Vp curve is approximately
linear with porosity for both mineral phases, and the Vp/Vs

ratio exhibits a strong dependence on porosity and tends to-
wards a fixed point (Vp/Vs)∗ ' 1.63=√(8/3) at higher porosi-
ties. This behavior was noted previously (Arns et al., 2002a)
and corresponds to a fixed point in the Poisson’s ratio ν∗ = 0.2.
The behavior is similar to that predicted in two dimensions
(Day et al., 1992).

In comparison with typical experimental results [see e.g.,
Han (1986)], the computations display a notable lack of noise
or scatter. This is primarily due to the elimination of the many
factors exhibited by experimental samples (variations in clay
content and presence of cracks) within the model microstruc-
ture. The standard error in the computed data (shown in the
Figure 2) is extremely small: <1% for most of the numerical
measurements. Only for Vp/Vs at high porosities does the stan-
dard error exceed a few percent. For systems at higher porosity,
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Velocity Relationships for Clean Sands 1825

the elastic properties become more dependent on small tenu-
ous connections, which are increasingly difficult to resolve nu-
merically and, therefore, larger statistical errors are observed.
Importantly, the numerical data in the region of most prac-
tical interest for consolidated rock, 5%<φ< 30%, exhibits
markedly less noise than typical experimental data. This al-
lows us to quantitatively analyze the effects of porosity and
the elastic properties of the mineral phase on (effective) elas-
tic properties. In a later section, we use this numerical data to
test common empirical and theoretical models used to predict
the elastic properties of sedimentary rocks.

Water-saturated rock

In Figure 3, we show results for the water-saturated values
of the bulk modulus K , shear modulus µ, Vp, and Vp/Vs ratio
for the OS model as a function of porosity for the two differ-
ent single-mineral phases. Again, despite the bulk modulus of
quartz and feldspar being very similar, the curves for the bulk
modulus of the water-saturated porous systems differ appre-
ciably. The bulk modulus trends between the modulus of the
mineral at zero porosity to values corresponding to a mineral-
pore suspension at large φ (Nur et al., 1991, 1995). The shear
modulus for the saturated system exhibits the same behavior as
the dry rock, going to zero at higher porosities. The Vp curves
are approximately linear with porosity for both mineral phases.
The Vp/Vs ratio exhibits a strong dependence on mineralogy.
The quartz data shows a slow linear increase with porosity with
a slow divergence. The feldspar data exhibits an approximately
constant region for 0<φ< 0.3 with a strong divergence for
φ > 0.3.

FIG. 3. Results of the simulation for the variation of the (a) bulk modulus, (b) shear modulus, (c) Vp, and (d)
Vp/Vs ratio under water-saturated conditions as a function of porosity for the single-phase OS model with quartz
and feldspar as the mineral phase.

Comparison with Gassmann’s relations

The low-frequency Gassmann’s equations relate the bulk
and shear moduli of a saturated porous medium to the moduli
of the same medium in a drained (dry) state. For an isotropic,
monomineralic medium, Gassmann’s relations allow the effec-
tive bulk modulus Ksat of the saturated rock to be calculated
from a knowledge of the dry frame modulus Kdry, the solid
matrix modulus Ks, and the pore fluid modulus K f :

Ksat

Ks − Ksat
= Kdry

Ks − Kdry
+ K f

φ(Ks − K f )
. (1)

Gassmann’s relations show that the shear modulus is mechan-
ically independent of the properties of any fluid present in the
pore space:

µdry = µsat. (2)

Gassmann’s relations [equations (1)–(2)] assume that the
porous medium contains only one type of solid constituent with
a homogeneous mineral modulus and that the pore space is sta-
tistically isotropic and is valid for quasistatic conditions (i.e., at
sufficiently low frequencies such that the induced pore pres-
sures are in equilibrium throughout the pore space). This limit
coincides with the conditions simulated with the finite-element
approach. The results summarized in Figure 4 show that the
numerical data for the OS model indeed obeys Gassmann’s
equations. The numerical prediction for both the bulk and
shear modulus are in excellent agreement with Gassmann’s
equations. The match to Gassmann’s relations provides further
verification of the accuracy of the numerical results.
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1826 Knackstedt et al.

Comparison to experiment

We compare the computed bulk and shear modulus for
dry and water-saturated model quartz sandstone morphologies
with experimentally mesured values (Han, 1986). Although
these measurements were made at ultrasonic frequencies, Han
(1986) suggests that the frequency dispersions a minimal; the
Biot-dispersions are '1% and the non-Biot dispersions negli-
gible for clean sandstones.

Dry rock.—Han (1986) reports a number of velocity mea-
surements for dry clean quartz sandstones. The numerical data
for the simulations on the quartz OS morphology is compared

FIG. 4. Comparison of the results of the simulations for dry
and water-saturated OS models to Gassmann prediction based
on the dry rock data with their standard errors. In (a), we give
the numerical results for the dry rock data and show best fits
to the data points (solid lines). We use these fits and equation
(1) to predict the values of the water-saturated curves (dot-
ted curves). We also show the numerical predictions for the
water-saturated results. The fit to the Gassmann’s equations is
excellent. In [b], we show that the shear modulus is indepen-
dent of the pore fluid equation (2).

to these measurements in Figure 5. The match between the
numerical calculations and experimental measurements is en-
couraging, and suggests that the simulation on the model gran-
ular morphology provides a reasonable representation of con-
solidated sandstone structure.

Water-saturated rock.—Han (1986) provided empirical
equations to describe measured velocities for water-saturated
clean sandstones as a function of porosity:

Vp = 6.08− 8.06φ km/s, (3)

Vs = 4.06− 6.28φ km/s. (4)

Comparisons between the numerical data for the quartz OS
model and the empirical equations are shown in Figure 6. The
agreement, over such a large range of porosities, is excellent.

Empirical equations, based on crossplots of experimental
data, are also used to relate Vp to Vs. Data for sandstones com-
piled by Castagna et al. (1993) is represented by

Vs = 0.804Vp − 0.856 km/s. (5)

Han (1986) presents an equation for sandstones with clay vol-
ume (<25%);

Vs = 0.754Vp − 0.657 km/s. (6)

Figure 7a shows a comparison between computed velocities
and the empirical equations (5) and (6). The overall agree-
ment is satisfactory but the numerical data falls slightly be-
low the values given by the empirical relationships. A possible
explanation for this is that the empirical relationships [equa-
tions (5) and (6)] include data from sandstones with significant
proportions of clay. To illustrate that this could be the case, we
plot in Figure 7b experimental data points for the saturated
velocities of Han (1986) for clean sandstones, the prediction of
Equation (6), and numerical data. The numerical predictions
now give an excellent match to this experimental data for clean
quartz sands.

COMPARISON TO VELOCITY-POROSITY MODELS

Dry rock

Theoretical models.—A number of theoretical methods
have been proposed for estimating the properties of sedi-
mentary rock. Bounding methods are rigorously based on mi-
crostructural information. Common bounds on the properties
of a two-phase composite without specifying any geometric in-
formation beyond porosity are the Hashin-Shtrikman bounds
(Hashin and Shtrikman, 1963). Higher order bounds can be
derived (Milton, 1982), but the microstructural information
needed to evaluate the results is not easy to obtain. Effective
medium approaches (Hashin, 1983) have also been developed.
We compare our numerical results to three of the most com-
monly cited theoretical methods: Hashin-Shtrikman bounds,
the self-consistent method (SCM), and the differential effec-
tive medium (DEM) approach.

From a specification of the volume fraction and constituent
moduli, one can obtain rigorous upper and lower bounds for
the elastic moduli of any composite material. The so-called
Hashin-Shtrickman bounds (Hashin and Shtrikman, 1962) are
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Velocity Relationships for Clean Sands 1827

given by

K+H S = Ks + φ

(K f − Ks)−1 + (1− φ)(Ks + 4/3µs)−1
,

(7)

µ+H S = µs + φ

(µ f − µs)−1 + 2(1− φ)(Ks + 2µs)
5µs(Ks + 4/3µs)

. (8)

Upper and lower bounds are computed by interchanging the
moduli of the solid and fluid components. In the case where
one phase has zero elastic moduli, the lower bound becomes
zero, and only the upper bound is useful.

One common effective medium theory, the DEM method
is constructed by incrementally adding inclusions of one phase
into the second phase with known constituent properties. DEM
does not treat each constituent symmetrically, but defines a
preferred host material. From the composite host medium
K ∗DE M(φ) at some porosity value φ is known. One then treats
K ∗DE M(φ) as the composite host medium and K ∗DE M(φ+ dφ) as
the effective constant after a small proportion dφ/(1−φ) of
the composite host has been replaced by inclusions of the sec-
ond phase. For a solid matrix host, the coupled system of ordi-
nary differential equations for the moduli is given by Berryman
(1992):

(1− φ)
d

dφ
[K ∗(φ)] = (K f − K ∗)P∗, (9)

FIG. 5. Comparison of the results of the simulations for (a) Vp and (b) Vs of water-saturated sandstone to the dry
velocity data of Han (1986) for clean sandstones.

FIG. 6. Comparison of the results of the simulations for (a) Vp and (b) Vs of water-saturated sandstone to the
empirical velocity-porosity equations derived by Han (1986) for clean sandstones. The match is excellent for
all φ.

(1− φ)
d

dφ
[µ∗(φ)] = (µ f − µ∗)Q∗, (10)

with initial conditions K ∗(0)= Ks and µ∗(0)=µs, and where
P∗ and Q∗ are shape-dependent geometric factors [see, e.g.,
Table 4.9.1 of Mavko et al. (1998)]. For the present study, we
used the geometric factors for spherical inclusions. Although
this is not realistic, it is unclear what shape one should use. Any
simple convex inclusion shape does not accurately define the
true morphology of the pore space.

In the SCM of Hill (1965) and Budiansky (1965), the host
medium is assumed to be the composite itself. The equations
of elasticity are solved for an inclusion embedded in a medium
of unknown effective moduli. The effective moduli are then
found by treating Kscm, µscm as tunable parameters. The result
is given in general form (Berryman, 1980) as

φ(K f − Kscm)P∗ f i + (1− φ)(Ks − Kscm)P∗si = 0, (11)

φ(µ f − µscm)Q∗ f i + (1− φ)(µs − µscm)Q∗si = 0. (12)

where the indices to P and Q indicate the inclusions of fluid
“∗ f i ” and solid “∗si” into a background medium of effective
moduli K ∗ and µ∗. The solution for the effective bulk moduli
is found iteratively. In the SCM study, we considered the ge-
ometric factors for spherical grains and pores only. The SCM
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1828 Knackstedt et al.

produces a single formula in which all components are treated
uniformly, with no one material being distinguished as the host
to the others. Such a symmetric formula has been thought to
be more appropriate in complex aggregates like consolidated
granular rocks, and was shown (Berge et al., 1993) to accurately
predict the mechanical behavior of a sintered glass–bead pack.

We compare the above three theories to our numerical pre-
dictions in Figure 8. We note that none of the theoretical mod-
els provide a satisfactory fit to the OS model. The SCM theory
gives a much better fit to the data than either the DEM or
the Hashin-Shtrickman upper bound. This is consistent with
the observations of Berge et al. (1993), who showed that the
SCM more accurately predicts the elastic properties of con-
solidated granular media. Further, the SCM theory predicts a
vanishing modulus for φ > 0.5, which is similar to the empirical

FIG. 7. (a) Comparison of the results of the simulations for
water-saturated sandstone to the empirical equations of Han
(1986) and Castagna et al. (1993). The numerical data is slightly
below the two empirical curves, but exhibits the expected linear
relationship between Vp and Vs. In (b), we show the experimen-
tal data of Han (1986) for clean sandstones and note that the
numerical fit gives the best match to the data.

critical porosity model (Nur et al., 1995) discussed in the next
section.

The conventional DEM model always predicts the perco-
lation or critical porosity (where the system falls apart) at 0
and 100%. Mukerji et al. (1995) developed a modified DEM
to incorporate a more realistic critical or percolation poros-
ity. For sandstones, the critical porosity φc where the mineral
grains no longer are load bearing is approximately φc= 40%.
The modified DEM incorporates this percolation behavior in
the predictions. The prediction with φc= 40% is given also in
Figure 8. We note that the modified DEM underestimates the
numerical data.

It is interesting to note that both effective-medium theo-
ries based on spherical pores predict the same critical Pois-
son’s ratio ν∗ = 0.2 (Vp/Vs=

√
8/3) (Garboczi and Day, 1995)

asφ→φc. The DEM predictsφc= 1, whereas the SCM predicts
φc= 0.5, close to that observed in Figure 2d. Figure 9 shows a
comparison between the Poisson’s ratio predicted by the SCM
theory and our numerical computations. Although the SCM
prediction displays similar limiting behavior to the numerical
data, the match is not consistent for both minerals, particularly
for feldspathic sands.

Empirical relationships.—Experimental measurements of-
ten show that relatively simple empirical relationships can
sucessfully describe the properties of sedimentary rock. In this
section, we compare a number of empirical equations with the
numerical data discussed in the previous section.

If the dry rock is modelled as an elastic porous solid, the
dry rock bulk modulus may be written as Kdry= K0(1−β),
where β is Biot’s coefficient. Krief et al. (1990) used experi-
mental data to find an empirical relationship for β as a func-
tion of φ. The resultant expression is (1−β)= (1−φ)m(φ),
where m(φ)= 3/(1−φ). They also used the empirical result
of Pickett (1963), which assumes that the dry rock Poisson’s
ratio is approximately equal to the mineral Poisson’s ratio,
µdry/Kdry=µ0/K0, which leads to

Kdry = K0(1− φ)m(φ), (13)

µdry = µ0(1− φ)m(φ). (14)

Nur et al. (1995) suggested a similar linear modulus-porosity
relation with a critical porosity, φc, which is written as

Kdry = K0

(
1− φ

φc

)
, (15)

µdry = µ0

(
1− φ

φc

)
. (16)

The critical porosity for sandstones was found empirically by
Nur et al. (1991) to be approximately φc= 0.40.

A comparison of the above empirical equations with the nu-
merical data is given in Figure 10. The results are mixed. Nei-
ther equation provides a completely satisfactory estimate of
the numerically simulated bulk-modulus data over the entire
range of porosity. According to both equations (13) and (15),
quartz (K0= 37.0 GPa) and feldspar (K0= 37.5 GPa), should
produce very similar bulk modulus-porosity curves. The nu-
merical data displays considerable deviations between the two
mineral systems. Analysis of the numerical shear-modulus data

D
ow

nl
oa

de
d 

05
/1

9/
13

 to
 1

28
.1

03
.1

49
.5

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Velocity Relationships for Clean Sands 1829

shows that the Krief equation [equation (14)] provides a very
accurate estimate for both mineral systems. The prediction of
Nur et al. (1995) for the shear modulus is satisfactory, but does
not capture the curvature observed in the numerical data in
Figure 10b as well as the Krief model.

The predictions of the Krief et al. (1990) and Nur et al.
(1991) models for dry Vp/Vs ratio are poor. Both models as-
sume [Vp/Vs]dry rock= [Vp/Vs]mineral. This prediction is clearly a
poor representation of the numerical data shown in Figure 2d.
Arns et al. (2002a) recently studied this limiting behavior of
the Poisson’s ratio for porous granular models and derived an
accurate empirical model for the Poisson’s ratio of dry porous
materials:

νdry = a(φ)+ νs

(
1− φ

φc

)3/2

, (17)

where νs is the Poisson’s ratio of the mineral phase andφ0= 1/2;
a(φ)= (φ/φc)3/2/5, for νs< 0.2; and a(φ)= 1− (1−φ/φc)3/2/5,
for νs> 0.2. The relationship for Vp/Vs is written as

Vp/Vs =
√
ν − 1
ν − 0.5

=
√

a(φ)+ νs(1− 2φ)3/2 − 1
a(φ)+ νs(1− 2φ)3/2 − 0.5

.

(18)

Figure 11 shows a comparison between this empirical model
and the numerical data for both ν and for Vp/Vs. The agreement
is very good.

FIG.8. Comparison of the simulation results to the range of theories used to predict the moduli of dry porous rocks.
(a) and (b) give predictions for quartz, (c) and (d) give predictions for feldspar. The Hashin-Shtrikman, SCM,
and DEM theories all overestimate the data for all porosities. Of the three, the SCM gives the best theoretical
fit to the data as expected from Berge et al. (1993). The modeified DEM underestimates the numerical data.

Water-saturated rock

Theoretical models.—We compare the theoretical models
previously discussed (Hashin-Shtrikman bounds, SCM, DEM,
and modified DEM), to our numerical predictions for water

FIG. 9. Comparison of the simulation data to the SCM theory
for Poisson’s ratio. While the SCM does give the observed lim-
iting behavior, ν∗(φ→ 0.5)→ 0.2, the prediction of the theory
is poor for feldspathic sands.
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1830 Knackstedt et al.

FIG.10. Comparison of the simulation results on dry monomin-
erallic sandstone microstructures to the empirical models of
equations (13) and (14) (Krief et al., 1990) and equations (15)
and (16) (Nur et al., 1995). The match to the Krief et al. (1990)
model is superior for the shear modulus. Neither model pro-
vides a good match to the bulk modulus data.

FIG. 11. Comparison of the simulation results on dry monominerallic sandstone microstructures to the empirical
model of Arns et al. (2002a) given in equation (17)–(18). Agreement is excellent.

saturated systems in Figure 12. We note that none of the theo-
retical models result in a satisfactory fit to the numerical data.
Again, the SCM theory provides a much better fit to the data
than either the DEM or the Hashin-Shtrikman bounds. This is
again consistent with the observations of Berge et al. (1993).
Modified DEM underestimates the numerical data.

Empirical models.—As for the dry systems discussed above,
relatively simple empirical relationships are often used to
estimate the properties of fluid-saturated sedimentary rock.
Measurements by Wyllie et al. (1956, 1958, 1963) show that
a relatively simple monotonic relationship can describe the
relationship between sonic velocity and porosity in saturated
sedimentary rocks when mineralogy is relatively uniform. The
relationship is written as

1
Vp
= φ

Vpf
+ 1− φ

Vps
, (19)

where Vp, Vpf , and Vps are the P-wave sonic velocities of the
saturated rock, the pore fluid, and the mineral material, re-
spectively. The interpretation of this expression is that the total
transit time is the sum of the transit time of the elastic wave in
the mineral and the transit time in the pore fluid. It is therefore
often referred to as the time-averaged equation.

Raymer et al. (1980) suggested a number of improvements
to Wyllie et al.’s empirical equation relationship. These are
summarised by

Vp = (1− φ)2Vps+ φVpf , φ < 0.37. (20)

Figure 13 shows a comparison between numerical data for
the OS morphology with the empirical equations of Wyllie et al.
(1956, 1958, 1963) and Raymer et al. (1980) for water-saturated
quartz and feldspar systems. Overall, the Raymer equation pro-
vides a better fit to the numerical data than the Wyllie et al.
equation. It estimates the OS morphology velocities to within
10% error for quartz sands and 2–3% for feldspathic sands.

Nur et al. (1991, 1995) postulated that the moduli of satu-
rated rocks should trend in a similar manner to that predicted
by equations (15)–(16) for dry rocks. Accordingly, the mod-
uli for saturated systems should trend linearly betweeen the
mineral grain modulus at low porosity to a value for a mineral-
fluid suspension at the critical porosity. Figure 14 shows a com-
parison between the Nur et al. (1991, 1995) model and the
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Velocity Relationships for Clean Sands 1831

numerical data for the quartz and feldspar systems. The re-
sults are mixed. The model provides reasonable estimates of
the numerical data for the bulk modulus of the quartz sys-
tem, but the corresponding estimates for feldspar are poor.
The model clearly fails to account for the strong effect of min-
eralogy exhibited by the numerical data. In comparison with
the bulk modulus predictions, the prediction for the shear mod-
ulus is satisfactory for feldspathic sands, but poor for the quartz
system.

FIG.12. Comparison of the simulation results to the range of theories used to predict the moduli of water saturated
rock. (a) and (b) give predictions for quartz, (c) and (d) give predictions for feldspar. The Hashin-Shtrikman
bounds are quite broad for the bulk modulus, and neither bound is predictive. The lower bound is zero for
the shear modulus. The SCM and DEM both overestimate the data for all porosities. The SCM gives the best
theoretical fit to the data as expected from Berge et al. (1993).

FIG. 13. Comparison of the results of the simulations for water-saturated (a) quartz and (b) feldspathic sands
to the empirical equations of Wyllie et al. [equation (19)] and Raymer [equation (20)]. The Raymer equation is
satisfactory and gives a better prediction than the Wyllie et al. equation. The prediction of the Raymer equation
is particularly excellent for feldspathic sands.

PROPOSED VELOCITY-POROSITY MODEL FOR CLEAN
SANDSTONES

On the basis of the numerical simulations on the OS mor-
phology and the comparisons with existing models and the-
ories discussed above, we propose a new empirical method
for accurately estimating the full velocity-porosity relationship
for monomineralic consolidated sands from only a knowledge
of the mineral modulus. The method is based on the excel-
lent match to the numerical data of both the empirical Krief
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1832 Knackstedt et al.

FIG. 14. Comparison of the results of the simulations for water-saturated (a) quartz and (b) feldspar sands to
the empirical equation of (Nur et al., 1995). For the bulk modulus, the model accurately describes the quartzose
sands but not the feldspathic sands. For the shear modulus, the feldspathic sand is best matched.

equation for the shear modulus of a dry sandstone and the em-
pirical equation of Arns et al. (2002b) for the Poisson’s ratio of
a dry porous rock:

µdry(φ) = µs(1− φ)m(φ), (21)

νdry = a(φ)+ νs(1− φ/φc)3/2, (22)

where µs and νs are the shear modulus and Pois-
son’s ratio, respectively, for the pure solid mineral phase;
m(φ)= 3/(1−φ) and a(φ)= (φ/φc)3/2/5, for νs< 0.2; and
a(φ)= 1− (1−φ/φc)3/2/5, for νs> 0.2. Gassmann’s equations
are subsequently used to predict the saturated states for any
fluid.

We compare the predictions of the proposed empirical model
to the numerical data discussed above and to the empirical crit-
ical porosity model of Nur et al. (1991, 1995) [equations (15)–
(16)]. Results of the comparisons are summarized in Figure 15.
The proposed empirical method is in excellent agreement with
the numerical data for all the calculated elastic properties, both
for dry and water-saturated systems. The method appears to be
superior to the critical porosity model. For porosities φ < 35%,
the method predicts modulus values, which are within 2% error
for the dry case and 5% error for the water-saturated case.

Figure 16 shows a comparison between the proposed empir-
ical method, the critical porosity model, and the experimental
data of Han (1986), together with the dry and water-saturated
velocity-porosity relationships derived from experimental data
by Han (1986) for clean sandstones. The agreement between
the proposed empirical method and the experimental data of
Han (1986) is encouraging.

CONCLUSIONS

1) The OS model is used to describe the microstructure of
clean sandstones. Numerical predictions of elastic proper-
ties based on this model are in good agreement with avail-
able experimental data for clean quartzose sandstones for
both dry and water-saturated states.

2) The data sets generated by numerical simulations on the
OS morphology have been shown to be markedly less
noisy or scattered than corresponding experimental mea-
surements. The almost total absence of noise has allowed
us to quantitatively compare model-generated numeri-
cal data with available theoretical models and empirical

equations. The numerical data is also shown to be in good
agreement with the analytical Gassmann’s relations.

3) The comparisons show that the common theoretical mod-
els (bounds and effective medium theories) for both dry
and water-saturated states are not particularly accurate
(Figures 8 and 12). The models significantly overestimate
modulus data as a function of porosity φ. The SCM pre-
dictions for ν (or Vp/Vs) do, however, show the correct
limiting behaviour for large φ (Figure 9).

4) Comparisons with a number of dry modulus-porosity
models show that the bulk modulus-porosity relation-
ships of both Krief et al. (1990) and Nur et al. (1995) fail
to accurately describe the numerical data (Figure 10a).
However, the Krief equation [equation (14)] does pro-
vide a very good match for the dry shear modulus data
with <2% error (Figure 10b). An accurate empirical
ν-φ or Vp/Vs-φ [equations (17) or (18)] relationship for
dry sandstone also matches the numerical data very well
(Figure 11).

5) The Raymer equation [equation (20)] is the best of
the modulus-porosity models for this model morphology
of well-consolidated sands under water-saturated condi-
tions. Errors of less than 10% are observed across the full
range of φ (Figure 13). The critical porosity model of Nur
et al. (1991, 1995) results in a poor fit to the numerical
data for Ksat versus φ, but a satisfactory fit to µsat versus
φ (Figure 14).

6) Based on our numerical data for clean consolidated sys-
tems, we propose that the modulus-porosity relations
may be accurately estimated for clean cemented sands
using the empirical Krief equation for the shear modulus
of a dry sandstone and the empirical equation of Arns
et al. (2002a) for the Poisson’s ratio of a dry porous rock.
Gassmann’s equations can then be used to predict the
fluid-saturated states. The results of comparisons of the
method to numerical model data and available experi-
mental data are encouraging.
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